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Abstract-An analysis of energy and mass transport near the tips of steadily advancing dendrites has been 
developed. Transport equations have been derived and have been solved using the method of variable 
transformation to a l-dim. system. Geometric and thermodynamic matching criteria were employed to 
ensure that the tip region transport fields were compatible with those obtained previously in the basal plane 
region. 

The overall results indicate that the higher the free field temperature the shorter and more blunt are the 
dendrites. Similarly increasing the free-field concentration at constant free-field superheat drastically reduces 
the dendrite length. Dendrite length was also found to be inversely proportional to the rate of freezing. 
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NOMENCLATURE 

spheroidal foci coordinate [m] ; 
constant in freezing point equation [K] ; 
constants in equation (Al); 
linear coefficient in freezing point equation 
[K-m3/mol] ; 
quadratic coefficient in freezing point equa- 
tion [K-m6/mo12] ; 
concentration [mol/m”] ; 
specific heat [N-m/kg-K] ; 
cubic coefficient in freezing point equation 

[K-m9/mo13] ; 
diffusion coefficient of solute in solvent 

[m’/sl ; 
fraction of volume occupied by solid or 
liquid ; 
value off, at the point of changeover; 

function defined by equations (23) and 

(24); 
function defined by equations (21) and 

(22); 
heat flux [W/m*]; 

basal heat flux component due to latent 
heat of fusion [W/m’] ; 
thermal conductivity [W/m-K] ; 
constant of integration ; 
latent heat of fusion [N-m/kg] ; 
dendrite spacing [m] ; 
characteristic dendrite length [m] ; 
liquidus slope [K-m3/g-mol] ; 
mass flux [g-mol/m*-s] ; 
temperature or concentration ; 

Peclet Number = Ra/u, Ra/D; 

energy flux [N-m/m*-s] ; 
radial coordinate [m] ; 
rate of freezing [m/s] ; 
time [s]; 

temperature [K] ; 
spatial coordinate’[m] ; 
moving spatial coordinate [m] ; 
axial coordinate measured from the 
spheroidal origin [m] ; 

= Z - 6, displaced axial coordinate [m] ; 
= a/L*, non-dimensional axial co- 

ordinate. 

Greek symbols 

thermal diffusivity [m*/s] ; 
constant in paraboloidal equation [m’] ; 
linear coefficient in paraboloidal equation 

[ml ; 
spheroidal coordinate displacement [m] ; 
quadratic coefficient in paraboloidal 
equation ; 
axial spheroidal coordinate; 
meridonal spheroidal coordinate ; 

density [g/m”]. 

Subscripts and superscripts 

c, concentration; 
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condition at changeover between basal and 
tip regions; 
eutectic; 
frontal ; 
interface condition; 
liquid region ; 
initial condition or oblate coordinates; 
prolate coordinates; 
solid region ; 
solidification ; 
tip condition ; 
free-field condition. 

IYTRODUCTION 

IN THE accompanying paper [ 11, a simple “two-zone” 
model of energy and mass transport during dendritic 
solidification was developed. To apply this model, 
coupled equations describing the temperature and 
concentration fields are solved for two distinct do- 
mains : one near the dendritic basal plane and the other 
near the dendrite tips. The temperature and con- 
centration profiles from each region are then “mat- 
ched” using geometric and thermal criteria to insure 
compatibility and to satisfy the overall boundary 
conditions. 

The object of the present paper is to perform an 
analysis in the dendrite tip region that is parallel to 
that done previously in the basal region ; that is, to 
derive energy and mass transport equations and solve 
for the temperature, concentration and dendrite shape 
profiles. The simplifying t~hnique used in the dendrite 
tip region is that of transformation to the oblate- 
prolate spheroidal coordinate system, in which 
the iso-potential loci are l-dim. Solution of the 
transformed equations yields families of profiles as a 
function of the boundary conditions. 

The present work includes, in addition, a develop- 
ment of the “matching” criteria, which provides a 
rationale for choosing the specific temperature and 
concentration profile in each region. The criteria 
include temperature and heat flux continuity at the 
point of changeover between the two regions, as well as 
matching of the dendrite cross-sectional area and 
surface curvature. 

Spheroidal coordinate geometry 
A plausible assumption about the shape of the 

dendrite tips is that their cross-sectional area is 
parabolic in form : 

r2 = p + $7 + & (11 

where fi, y and E are constants, r is the dendrite radius 
and 2 is the axial coordinate, fixed with respect to the 
dendrite surface. From surface energy considerations, 
it is known that the tips must be convex out, which 
places restrictions on possible values of the coefficients 
p, y, and E. The most general mathematical expression 

of the quadratic form within the convex-out restriction 

is in the oblateeprolate spheroidal coordinate systems. 
These systems are shown schematically in Fig. 1 and 
are mathematically related to the circular cylinder 
system by 

r =acoshv) sin@ 

_?? = asinhq cos@ 
oblate 

and 

r = a sinh r) sin 0 

2 = acoshn cost, 
prolate. 

(2) 

In these equations, a is the distance from the cylindri- 
cal origin to the ellipsoidal focus (see Fig. 1). The 
spheroidal coordinate systems are axially symmetric 
ellipsoidal systems generated by rotating an ortho- 
gonal family of confocal ellipses and hyperbolas about 
the major (prolate) or minor (oblate) axes of the 
ellipses. 

The surfaces Q = constant describe ellipsoids which 
are identical in form to those described by equation (1) 
and may be used to express the shape of the dendrite 
tips and the iso-potential loci. The axial coordinate q 
ranges from zero to infinity depending upon the degree 
of “pointedness” of the dendrite tip in either the oblate 
or prolate case. Oblate spheroids range from flattened 
discs at 9 = 0 to spherical as q approaches infinity and 
prolate spheroids vary from spherical as 4 approaches 
infinity to infinitely pointed as q vanishes. Thus 
dendrite tips described by the surfaces 4 = constant 
may assume any degree of “pointedness”, within the 
convex-out restriction. Dendrite tip configurations for 
various values of q,+, are illustrated in Table 1. 

A 
t3 = const 

o 1 o cash 7) 

o sinh q 

Fro. 1. Schematic repre~ntation of the ablate (upper figure) 
and prolate spheroidal coordinate systems. 
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Table 1. Dendrite tip con~gurations and their associated geometric parameters 

To describe the dendrite surface in the form of 
equation (l), we transform to the 3 coordinate system 
given by 

Z=S?+6 (4) 

where 2 is measured from the origin of the spheroidal 
system, 9 is measured from the displaced origin and S 
is the origin displacement (see Fig. 1). Using this 
transformation and eliminating the 6 dependence in 
equations (2) and (3), we obtain 

and 

Finally, equations (5) and (6) may be non- 
dimensionalized using the transformations : 

3 = I/L* (9) 

and 

to obtain 

I = acosh qtip 

(oblate) 

r = a sinh Q, 
“) 

(prolate) 

where Q, is the spheroidal coordinate describing the 
dendrite surface. The maximum apparent radius of the 
dendrite tip when viewed along the - 2 axis (the 
dendrite frontal radius) may be obtained from equa- 
tions (5) and (6). 

Setting 3 to -6, we obtain 

r, = a cash q,+, (oblate) 

and 

r, = a sinh vtiP (prolate). 

(7) 

(8) 

(10) 

and 
(oblate) (11) 

L* 2 
sinh’ yllip - z*’ - 

i > L 
tanh’ qeiP 

- 22* 

where 
(prolate) (12) 

and L, is the dendrite spacing (see Appendix). The 
parameter f, represents the fraction of the cross- 
sectional area at any position that is occupied by ice. 
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ENERGY AND MASS TRANSPORT 
NEAR DENDRITE TIPS 

Transport equations 
Ivantsov [2] analyzed heat and mass transport in 

the vicinity of dendrite tips described by equation (1) 

and indicated that the isotherms and isoconcentrates 
are mathematically identical in form to the dendrite tip 
equation. This implies that the temperature and con- 

centration fields are l-dim in the axial coordinate, q. 

The l-dim. ordinary differential equations describ- 
ing the energy and solute transport have been derived 

by [61: 
(QT. 
2 + [Pec,coshq + tanhq]?=O, 
?q2 

(14) 

?ZC 
~ + [Pet, cash q + tanh 012 = 0 
?$ 

(15) 

for the oblate spheroidal geometry, and 

S2T. 
J + [Pecjsinhg + cothq]$ = 0 
i$ 

(16) 

$ + [Pet, sinh >l + coth ~12 = 0 (17) 

for the prolate spheroidal case, where 

Pee, = aR/D 

and 

(18) 

Pecj = aR/cxj, j = s, F. (19) 

Comparison of equations (14)-(17) shows that the 
temperature and concentration fields will be geometri- 
cally similar in form but will in general have different 
parametric distortion. The solution to equations 

(14)-( 17) is given by 

pi(S) - P , = Kj!J, (Peci, VI, (20) 

i = s, E,c; j = oblate, prolate 

where P, = T,, P, = T, and P, = C, and the Kj are 
constants of integration. The functions gj are given by 

where 

r’ - 
exp( - Pet, sinh q) 

oblale 
coshu ’ 

(23) 

and 

exp( - Pet, cash q) 
prolaW = 

sinhq 
(24) 

Boundary conditions 
The boundary conditions for the temperature and 

concentration fields are summarized in Table 2. In the 

freezing of most aqueous solutions, solute molecules 
are excluded completely from the advancing ice crys- 
tal. This condition is expressed mathematically by 
setting the solute particle velocity to zero in the 
dendrite- surface--fixed coordinate system. By neglect- 
ing the volume change associated with freezing?, we 

obtain 

and 

C’C 
F (Vtip) + Pet, sinh(q+) C(Vt,) = 0 (25) 

c?C 
F (QJ + Pec,cosh(rl,,J C(Utip) = 0 (26) 

for the prolate and oblate cases respectively. The 

conditions are applied at q = qlip which represents the 
front surface of the advancing dendrite. 

The temperature profiles described by equation (20) 
must “match” at the dendrite surface. Then 

‘s(Vtip) = ‘E(~tip) = T,. (27) 

If we assume that the solid phase and the liquid 
solution just adjacent to it are essentially in local 

thermodynamic equilibrium, the interface concen- 
tration will determine the interface temperature from 
the locus of two-phase equilibrium states. This locus 

may be approximated by a power series of the form 

T, = a’ + b’C(tl,,,) + c’C2(qtip) + d’C3(q,ip). (28) 

The rate of liberation of the latent heat of fusion is 
controlled by the rate of advance of the dendrite. 

Conservation of energy applied to a control volume 
centered on the dendrite surface gives 

for the prolate coordinates; and 

k, 2 (utip) - k;z (Vlip) = &,~cosh(rl,iJ (30) 

for the oblate coordinates. The left-hand sides of 
equations (29) and (30) represent the net heat flux out 
of the control volume as calculated by the Fourier 
conduction law, which is equated to the rate of 
liberation of the latent heat of fusion. 

In addition to satisfying conservation of energy and 
solute, a dendrite stability condition must be imposed 
at the dendrite tip. Dendrites are formed from the 
growth of perturbations of a morphologically unstable 
planar interface. This structural change tends to relieve 
instability as the system approaches a stable, quasi- 
steady state. The tip configuration at steady state is 
that which just eliminates the instability, and is termed 
marginally stable. 

The Mullins-Sekerka stability criterion [3] which 

tAs stated in the preceding paper, this volume change 
would give rise to a relative motion between the solid and 
liquid regions. Its effect is considered negligible. 
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Table 2. Boundary conditions at the dendrite tip 
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Prolate Oblate 

Concentration 

Temperature 

Marginal stability condition 

2 (rlLip) + Pet, sinb(%,) C(qtip) = 0 
ac 
~olti,) + Pec,coshh,)c(vliP) = 0 

Tsht,,) = T,h,i,) = a' + b'chJ + c'ChJ2 + d'ChpY 

k$ (q,,,) - 4% (q,iJ k$(,l,i,) - k,$%..) 

= aRp,Lsinh(v,,,) = aRGcosb(rl,,,) 

ks(q,i.) + k!&,iJ 1 5 0 

was developed for planar freezing, applies equally well 
to the present case. The criterion mathematically 
expresses the condition of stability of a given dendrite 
configuration and will apply as a coupled boundary 
condition on the transport fields. The criterion is: 

X 
[ 

k,s(?tip) + kisktip) 

1 
5 O t31) 

where the terms are expressed by equations (20), (25), 
(26) and (28). The first term ofequation (31) represents 
the gradient in the liquidus temperature; it is always 
positive and thus is a destabilizing influence. The 
second term represents the interface temperature gra- 
dient; it is always negative and favors stability. Mar- 
ginal stability of the interface occurs if the two terms 
are equal in magnitude. Marginally stable dendrites 
and the equality of equation (31) is the case considered 
here. 

Equations (25)-(30) may be used in equation (20) to 
solve for the constants of integration, Kj. After re- 
arranging, these constants are given by 

K: = 
C I Pet, cash q,ip 

X(Pec=, Vtip) - Pet, cash Vtip g,(Pec,, ~tiJ ’ 

(32) 

K; = 
C,Pec,cosh q,ip 

A(Pec,, V+) - Pet, sinh Vlipgp(PecCt qtip) ’ 

K", = T, - T, 
g,VN9 Vtip) ’ 

K"p = T - T, 
C&U+% f/tip) ’ 

(33) 

(34) 

(35) 

K” = SK2 Jp(P%VtiJ RP~L -- 
’ k, ‘A(Pec,,qtip) k, a ‘lnh ‘lCip 

(36) 

and 

Kz = 5 Ke APecgT sipI RPJ -__ 
k, OpO(Pec,, q+) k, acosh v’ip 

(37) 

where T(q,J is the temperature at the dendrite surface 
given by equation (28) with C(Q) given by equation 
(25) or (26). By using these constants in equations (20) 
and (31) and by specifying the dendrite frontal radius 
and the rate of freezing, the concentration and tem- 
perature profiles in the vicinity of the advancing 
dendrite may be obtained. 

Spheroidal coordinate results 
The non-dimensional temperature and concen- 

tration profiles are plotted in Figs. 2 and 3. These plots 
represent a comparison of profiles near marginally 
stable dendrites ofa constant frontal radius of lOOpm, 
in order to illustrate the effect of freezing rate. The 
frontal radius, given by equations (7) and (8), may be 
substituted into the definition of Peclet number to 
yield 

Pet = RUC@w) 
’ D sinh(qti,) 

(prolate), (38) 

Pet = RWJw) 
’ Dcosh(Vtip) 

(oblate), (39) 

pet, = R(1mw4 
’ clj sinh(q,i,) 

(prolate) (40) 

and 

pet, = R(lOO!Jm) 
’ ajCOSh(Vtip) 

(oblate), j = s, E. (41) 

Thus as the rate of freezing is varied from lOpm/s to 
lOOOpm/s, the Peclet numbers must be changed 
according to equations (38)-(41) to maintain the 
frontal radius at 1OOpm. Physical constants used in the 
solution are identical to those used in the previous 

paper I?]. 
The concentration and temperature profiles are 

expressed in terms of the “unaccomplished potential 
change” or the fraction the potential has changed from 
the interface value to the free-field value. To specify the 
potential fields completely, the interface concentration 
must be calculated from equation (20) and the cor- 



568 MIWAEL G. O’CALLAWAN. ERNEST G. CRAVAI.HO and CHARLES E. HUWIM 

FIG. 2. Non-dimensional temperature profiles in the vicinity of dendrites growing at various rates. Dendrite 
frontal radius is constant at 100pm. 

FIG. 3. Non-dimensional concentration profiles in the vicinity of dendrites (rI = 100pm) growing at various 
rates. 

responding interface temperature calculated from 
equation (28). These parameters are plotted in Fig. 4. 
The three factors that increase the interface con- 
centration (decrease the interface temperature) are 
increasing the bluntness of the dendrite tip, increasing 
the rate of freezing and increasing the dendrite frontal 
radius. Since the tip bluntness is fixed by the require- 
ment of marginal stability and the frontal radius is 
fixed by definition (100 pm), Fig. 4 illustrates the effect 
of rate of freezing only. 

The temperature and concentration profiles shown 
in Figs. 2 and 3 are qualitatively similar since they are 
both solutions to equation (20) with different Peclet 
numbers and boundary conditions. The variation of 
both profiles is of the form exp(Pec eexpq). This 
functional form causes a drastic change in the poten- 
tials near the dendrite surface but a much slower 
change as the free-field is approached. 

BASAL REGION-TIP REGION 
MATCHING CRITERIA 

timit of basaf region 
The assumption of planar iso-potential loci places 

limits on the region of applicability of the basal region 
solution. The assumption becomes invalid when the 
dendrite area changes substantially with axial posi- 
tion. It can be shown [4] that the overall solution is 
very insensitive to the number chosen for the termin- 
ation value of dfJdZ*, provided that it is greater than 
0.2. Therefore, the criterion for terminating the basal 
region and starting the tip region will be assumed when 
the magnitude of df,/d? exceeds 0.2. 

Geometric compatibility 
The basic idea behind the “two-zone” solution 

scheme is to use the basal region solution to describe 
the dendrite shape up to a changeover point and then 



Neat and solute transport-II 549 

to determine a spheroidal cap that matches with this part is to determine the basal temperature gradient 

dendrite base. Therefore, the values off 5 and d f ,idz* and the axial position of changeover Z&,gcr using a 

predicted by the basal solution must be equal to the one-point iteration scheme. These parameters are then 

values predicted by the tip region solution at the point used as boundary conditions to caicuiate the com- 

of changeover. By definition, g* = 0 at the point of posite temperature and concentration fields in the 

changeover, so using equations (11) and (12) we obtain second part of the procedure. 
The calculation is started by guessing values for the 

two unknown variables. The basal region equations 
are then integrated from Z* = 0 (basal plane) to the 
assumed Zzbhange. The resulting values of f, and 
df,/dZ* at Z* = ZF*hanpe are used in equations 
(42)-(45) to obtain a and 6. The dendrite tip con- 
figuration trlir, is calculated from equation (31) and the 
tip concentration and temperature are calculated from 
equation (20). The degree of satisfaction of the 
matching criteria is determined by comparing the left 
and right hand sides of equations (46) and (47). If the 
criteria are not satisfied to acceptable accuracy, a 
revised guess of the basal temperature gradient and 
changeover position is made and the procedure is 
repeated. When acceptable accuracy has been ob- 
tained, the basal region and tip region equations are 
integrated a final time to obtain the final result. 

The reader should note that the temperature, con- 
centration and dendrite shape profiles do not depend 
upon the rate of freezing when described in the Z* 
coordinate system. The spheroidal characteristic dim- 
ension, a is proportional to dendrite spacing (see 
Appendix) which is in turn proportional to R-‘. When 
the characteristic dimension, a, is substituted into 
equations (38)-(41) to obtain the Peclet numbers, the 
rate of freezing dependence is cancelled. 

COth’ll,ip (43) 

for the ablate case, and 

f, (changeover) = [&y sinh’ qtip - (%)’ tanhZ qtip 

(44) 

g (changeover)= - 2 (45) 

for the prolate system, where fd is the value of 
f, predicted by the basal solution at the point of 
changeover. The reader should note that higher 
order derivatives are allowed to be discontinuous at 
the point of changeover. 

Thermal matching conditions 
At the point of changeover, the first law of thermo- 

dynamics requires that temperature and heat flux be 
continuous. Equating the heat flux predictions in the 
basal and tip regions at the point of changeover, we 
have 

g {changeover) 

The fact that the tem~rature distributions pre- 
dicted by the basal and tip region solution schemes are 
geometric~ly dissimilar in shape makes compliance 
with the requirenlent of temperature continuity dif- 
ficult. As an approximate criterion, the temperature 
predicted by the basal solution will be equated to the 
dendrite tip temperature, 

AT= T, - T,(C,) (48) 

where T,(C,) represents the equilibrium freezing tem- 
perature at the free-field concentration. 

~~changeover) = T,(Vtip) = Ts(Vtip) (47) 

= T,. 

The maximum error associated with this simplified 
criterion is 0.01 K. 

Overall method of solution 

The concentration in the liquid just adjacent to the 
dendrite tip, shown in Fig. 6, increases sharply with 
AT. Larger values of superheat increase the liquid 
phase temperature gradient, which from equation (31) 
is a stabilizing influence. The tips are therefore more 
blunt at marginal stability producing higher values of 
tip concentration. Tip temperature decreases with 
increasing tip concentration due to the assumption of 
thermodynamic equilibrium, in a manner similar to 
that shown in Fig. 4. As AT approaches zero, the 
interface concentration approaches the free-field value 
and the interface temperature approaches the equilib- 
rium freezing temperature. 

A block diagram of the solution scheme is shown in As material moves through the solidification zone, it 
Fig. 5. The method consists of two serial parts. The first undergoes three distinct energy interactions. The 

OVERALL RESULTS AND DISCUSSION 

‘Ihe overall temperature, concentration and den- 
drite shape results are presented in Figs. 69. Two 
independent boundary conditions are needed to 
specify each freezing condition : the free-field tempera- 
ture and the free-field concentration. An equivalent 
way ofexpressing the temperature boundary condition 
is by the free-fietd superheat which is defined by 
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5ooo $j’i52 

FIG. 4. Interface concentration and temperature as a function of the rate of freezing and the free-field 
concentrations. The dendrite frontal radius is constant at 100pm. Note that both temperature and 
concentration are read from the same plot, the former from the right-hand ordinate and the latter from the 

left-hand ordinate. 

Are matching crlterla samfled ? 

FIG. 5. Block diagram of solution technique. 
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FIG. 6. Dendrite tip concentration as a function of free-field 
concentration and superheat. 

FIG. 7. Sensible heat flux at the basal plane as a function of 
free-field concentration and superheat. 

,” 0.4- 
Tom= 269.7 K (sat) 

FIG. 8. Interdendritic and centerline temperature and concentration profiles and dendrite shape profiles for 
C , = 1000 g-mol/m3. The dashed lines represent the temperature profiles and correspond to the left-hand 

ordinate. 
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dominant interaction is the release of the latent heat of 
fusion, which is constant at a given free-field con- 
centration [l, 41. The other two energy interactions are 
sensible energy changes resulting from cooling the 

liquid to the freezing temperature and cooling the solid 
to the eutectic temperature. All of these energy in- 
teractions contribute to the required basal heat flux. 

Since the release of the latent heat of fusion is not 
affected by AT, the required basal heat flux ill excess of 
the latent heat flux contribution is plotted in Fig. 7. Of 
the two sensible heat interactions, the change of 
temperature of the liquid is the dominant factor since 
the thermal capacity of the liquid is twice that of the 
solid. The basal heat flux due to the change of 
temperature of the liquid is proportional to the free- 
field temperature, which produces the linear relation- 
ship shown in Fig. 7. 

The temperature and concentration profiles along 
the midline between two adjacent dendrites (the 

interdendritic space) are shown in Figs. 8 and 9 for C , 
= 1000 and 2000 mol/m3 respectively. The tempera- 
ture increases almost linearly from the basal plane to 
the point of changeover between the basal and tip 
regions where it approaches the free-field temperature 

asymptotically. Because of the assumed coupling 
between temperature and concentration in the basal 
region, the concentration decreases linearly and ap- 
proaches C ~ in a manner similar to the temperature. 

The concentration and temperature profiles along a 

dendrite axis are shown in Figs. 8 and 9. The tempera- 
ture profiles are identical to those on the interdendritic 
axis in the basal region since the temperature field was 

assumed to have no lateral variation in that region. 
However, the temperature gradient along the dendrite 
axis is allowed to be discontinuous at the dendrite 
surface by virtue of equations (29) and (30). The 
magnitude of this discontinuity is small enough to be 
quantitatively unnoticeable in Figs. 8 and 9. The 
concentration of solute is zero everywhere in the solid 
and exhibits steep profiles in the liquid just adjacent to 
the dendrite tips. 

SUMMARY AND COhCLUSIONS 

Equations describing the energy and mass transport 
near the tips of steadily advancing dendrites have been 
derived. Transformation to the oblateeprolate 

spheroidal coordinate system yielded l-dim. equations 
which were solved analytically. Because of the l/R 
variation of the dendrite spacing, interface speed was 
eliminated as an independent variable. 

The solution of the l-dim. equations show that 
dendrites are shorter and more blunt for both higher 
free-field superheat and higher free-field concen- 
tration. The required basal heat flux and dendrite tip 
concentration also increase sharply with increasing 
free-field superheat. The steep concentration profiles 
near the dendrite tip are made less severe by increasing 
tip pointedness or decreasing dendrite diameter. 

04. T, =265 8 K (sol1 

T, = 293.2 K 
02. 

Vh ;& 
T-=273.2 K 

0.0 ) 

4500 
290 _------ 

- 4000 

260 - T, =293.2 K 
270 - _---- 

FIG. 9. lnterdendritic and centerline temperature and concentration profiles and dendrite shape profiles for 
C, = 2000 g-mol/m3. The dashed lines represent the temperature profiles and correspond to the left-hand 

ordinate. 
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Dendrite spacing 

APPENDIX 

The most recent work on dendrite spacing in aqueous 
systems is by Rohatgi and Adams [S]. They derived the 
following relationship between dendrite spacing and solidifi- 
cation parameters 

Li, = (A, + &C&r, (Al) 

where A, and A2 are constants, and the characteristic freezing 
time t, is defined by [4] 

rf = 0.25L*/12. (A2) 

From available data, A, and A, are found to be 

A, = 6.41 X I0-7”-s-‘i2 

and 

A, = 1.09 x 10~9m“-s~‘~Z-g-mol-1. 

ANALYSE DU TRANSFERT DE CHALEUR ET DE SOLUTE PENDANT LA 
SOLIDIFICATION D’UNE SOLUTION AQUEUSE BINAIRE-II. REGION DES 

SOMMETS DES DENDRITES 

RCsumb-On dCveloppe I’analyse du transfert d’tnergie et de masse prts des sommets de dendrites qui 
avancent en permanence. Des huations de transport ont itC obtenues puis rtsolues en utilisant la methode 
de changement de variable pour obtenir un systBme B une dimension. Des crittres geomitriques et 
thermodynamiques mnt employ& pour faire en sorte que les champs dans la rdgion du sommet soient 
compatibles avec ceux obtenus prkctdemment dans la rkgion du plan de base. 

Les rtsultats globaux montrent que plus le champ de tempkrature est blevl, plus les dendrites sont courts et 
6mousis. De fagon semblable, I’accroissement du champ libre de concentration avec une surchauffe 

constante rbduite notablement la longueur des dendrites. Celle-ci est trouvee Stre aussi inversement 

proportionnelle A la vitesse de solidification. 

EINE ANALYSE DES WARME- UND STOFFTRANSPORTS BEIM ERSTARREN EINER 
WbiSSRlGEN BINAREN L&SUNG--II. BEREICH DER DENDRITENSPITZE 

Zusammenfassung-Es wurde eine Analyse des Energie- und Stofftransports in der Ntihe der Spitzen von 
stetig wachsenden Dendriten entwickelt. Die Transportgleichungen wurden aufgestellt und durch Variablen- 
transformation in ein eindimensionales System gel&. Geometrische und thermodynamische Anspas- 
sungskriterien wurden eingefiihrt, urn sicherzustellen, dal3 die Felder der TransportgrGIJen in der 
Spitzenregion mit denen vertrgglich sind, die schon friiher fiir den Basisfllchen-Bereich ermittelt wurden. Die 
Gesamtergebnisse zeigen, daR die Dendritenform urn so kiirzer und stumpfer wird, je hdher die Temperatur 
in der LGsung ist. .&hnlich reduziert eine zunehmende Konzentration in der LGsung bei konstanter 
Oberhitzung die Dendritenllnge drastisch. Es zeigte sich, da13 die Dendritenllnge umgekehrt proportional 

der Gefriergeschwindigkeit ist. 

AHAJIM3 nEPEHOCA TEfIJIA II MACCbI PACTBOPEHHOI-0 BEUECTBA JIPM 
SATBEPAEBAHMIJI BOAHOI-0 EiMHAPHOI-0 PACTBOPA ~ II. 06JlACTb 

AEHAPMTHbIX BEPWMH 

AHHOTWIIR- nposeneH aHann nepeHoca weprea H Maccbl y sepmlrH Henpepbreno pacTyurtrx new 

LI~HToB. BbIBeneHbI ypaBHeHllR nepeHOCa, KOrOpbIe pemeHb1 MeTOLLOM npeo6pa30BaHHn IlcpeMeHHbIX 

DIR OJlHOMepHOrO CJIy'laS. &lR COnOCTaBJleHUI pe3yJIbTaTOB n0 nepeHOCy, nOJIyWHHbIX B o6nacra 
y BepmliH &i 6a3HcHofi nIIOCKOCTH HCnO,,bSOBa,WCb reOMeTpH'ieCKHe ti TepMOnHHaMHqeCKHe KpHTepHH 

cpamHsaHAn. fIoKa3an0, wo qeM abnue TeMnepaTypa pac-rsopa, reM 6onee K0p0T~~Mli A ~O~O~AMH 

RBJIBIOOTCII fleHIIp&iTbI. AHanorwiHo, npH 6onbmeii KOHUeHTpa4HH paCTBOpa H nOCTORHHOM er0 nepe- 

rpeBe LUlHHa LIeHnpRTOB SHaVHTenbHO MeHbme. Hafineno TaKIe, 'IT0 mAHa I,eHnpltrOB 06paTHo 

nponopuaonanbHa cKop0c-r~ 3aTeepneaansn. 


