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Abstract—An analysis of energy and mass transport near the tips of steadily advancing dendrites has been
developed. Transport equations have been derived and have been solved using the method of variable
transformation to a 1-dim. system. Geometric and thermodynamic matching criteria were employed to
ensure that the tip region transport fields were compatible with those obtained previously in the basal plane
region.
The overall results indicate that the higher the free field temperature the shorter and more blunt are the
dendrites. Similarly increasing the free-field concentration at constant free-field superheat drastically reduces
the dendrite length. Dendrite length was also found to be inversely proportional to the rate of freezing.
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NOMENCLATURE

spheroidal foci coordinate [m];

constant in freezing point equation [K];
constants in equation (Al);

linear coefficient in freezing point equation
[K-m?/mol]};

quadratic coefficient in freezing point equa-
tion [K-m®/mol?];

concentration {mol/m?];

specific heat [N-m/kg-K];

cubic coefficient in freezing point equation
[K-m®/mol*];

diffusion coefficient of solute in solvent
[m?/s];

fraction of volume occupied by solid or
liquid;

value of f at the point of changeover;
function defined by equations (23) and
(24);

function defined by equations (21) and
(22);

heat flux [W/m?];

basal heat flux component due to latent
heat of fusion [W/m?];

thermal conductivity [W/m-K];

constant of integration ;

latent heat of fusion [N-m/kg];

dendrite spacing [m];

characteristic dendrite length [m];
liquidus slope [K-m?/g-mol];

mass flux [g-mol/m?-s];

temperature or concentration ;
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Pec,

N H 3

Peclet Number = Ra/a, Ra/D;

energy flux [N-m/m?2-s};

radial coordinate [m];

rate of freezing [m/s];

time [s];

temperature [K];

spatial coordinate’[m];

moving spatial coordinate [m];

axial coordinate measured from the
spheroidal origin [m];

=Z -4, displaced axial coordinate [m];
= Z/L*, non-dimensional axial co-
ordinate.

Greek symbols

a,

B,
7

S,
&

r”
6,

o,

thermal diffusivity [m?/s];

constant in paraboloidal equation [m?];

linear coefficient in paraboloidal equation
[m];

spheroidal coordinate displacement [m];

quadratic coefficient in paraboloidal
equation;;

axial spheroidal coordinate;

meridonal spheroidal coordinate;

density [g/m*].

Subscripts and superscripts

c,

concentration ;
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change, condition at changeover between basal and

tip regions;
eut, eutectic;
f, frontal;
I, interface condition ;
£, liquid region;
0, initial condition or oblate coordinates;
P, prolate coordinates;
s, solid region;
sot, solidification ;
tip, tip condition ;
g free-field condition.
INTRODUCTION

IN THE accompanying paper [ 1], a simple “two-zone”
model of energy and mass transport during dendritic
solidification was developed. To apply this model,
coupled equations describing the temperature and
concentration fields are solved for two distinct do-
mains : one near the dendritic basal plane and the other
near the dendrite tips. The temperature and con-
centration profiles from each region are then “mat-
ched™ using geometric and thermal criteria to insure
compatibility and to satisfy the overall boundary
conditions.

The object of the present paper is to perform an
analysis in the dendrite tip region that is parallel to
that done previously in the basal region; that is, to
derive energy and mass transport equations and solve
for the temperature, concentration and dendrite shape
profiles. The simplifying technique used in the dendrite
tip region is that of transformation to the oblate-
prolate spheroidal coordinate system, in which
the iso-potential loci are 1-dim. Solution of the
transformed equations yiclds families of profiles as a
function of the boundary conditions.

The present work includes, in addition, a develop-
ment of the “matching” criteria, which provides a
rationale for choosing the specific temperature and
concentration profile in each region. The criteria
include temperature and heat flux continuity at the
point of changeover between the two regions, as well as
matching of the dendrite cross-sectional area and
surface curvature.

Spheroidal coordinate geometry

A plausible assumption about the shape of the
dendrite tips is that their cross-sectional area is
parabolic in form:

1* =B+ yZ +¢Z? i

where f, y and ¢ are constants, r is the dendrite radius
and Z is the axial coordinate, fixed with respect to the
dendrite surface. From surface energy considerations,
it is known that the tips must be convex out, which
places restrictions on possible values of the coefficients
B, v, and £ The most general mathematical expression
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of the quadratic form within the convex-out restriction
isin the oblate-prolate spheroidal coordinate systems.
These systems are shown schematically in Fig. 1 and
are mathematically related to the circular cylinder
system by

r = acoshy sin 6

" blat
Z = asinhp cos{}} oblate

and

2
r = asinh# sin 6

~ late.
Z = gacoshy cos 0} profate

In these equations, a is the distance from the cylindri-
cal origin to the ellipsoidal focus (see Fig. 1). The
spheroidal coordinate systems are axially symmetric
ellipsoidal systems generated by rotating an ortho-
gonal family of confocal ellipses and hyperbolas about
the major (prolate) or minor (oblate) axes of the
ellipses.

The surfaces n = constant describe ellipsoids which
are identical in form to those described by equation (1)
and may be used to express the shape of the dendrite
tips and the iso-potential loci. The axial coordinate 5
ranges from zero to infinity depending upon the degree
of “pointedness” of the dendrite tip in either the oblate
or prolate case. Oblate spheroids range from flattened
discs at 7 = 0 to spherical as # approaches infinity and
prolate spheroids vary from spherical as 4 approaches
infinity to infinitely pointed as » vanishes. Thus
dendrite tips described by the surfaces n = constant
may assume any degree of “pointedness”, within the
convex-out restriction. Dendrite tip configurations for
various values of 7, are illustrated in Table 1.

]8 = const
z J
lf
7 =const z
_ J R
r
I | |
T a Im acoshnp |
b4
7= const
/ g t
= gons
7
N
5 a
r
]

a sinh g

FiG. 1. Schematic representation of the oblate (upper figure)
and prolate spheroidal coordinate systems.
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Table 1. Dendrite tip configurations and their associated geometric parameters
Ntip Aspect Ratio ITlustration
0.0 0.0 }
0.5 0.462 -9—-
e
= 1.5 0.905 4}
3
3.0 0.995 {)—
3.0 1.01 {;}-
1.5 1.1 {;E)-
[*%)
1> E
a 0.5 2.16 +
&
I
T
0.1 10.0 + - — >
To describe the dendrite surface in the form of Finally, equations (5) and (6) may be non-
equation (1), we transform to the & coordinate system  dimensionalized using the transformations:
given by -
B Z* = F/L* 9
L= +6 4
N i and
where Z is measured from the origin of the spheroidal 2
system, & is measured from the displaced origin and § fo= o 5 (10)
is the origin displacement (see Fig. 1). Using this nLlp
transformation and eliminating the 0 dependence in {5 obtain
equations (2) and (3), we obtain
ay 2 se2(LFY 2
F+5 \2 fo= i cosh®n,, — Z* L coth® i,
r=acoshy,, [1—{-—7 (5 o D
asinh g, SL* 5\
Y ] iy 2 2 2
(oblate) 2Z (le) )coth Neip (1'4)) coth®n,,
and
{oblate} (11)
. ZF+\?
r = asinh,;, \/ 1 - (————w) 6) and
acoshn,,

{prolate)

where 1, is the spheroidal coordinate describing the
dendrite surface. The maximum apparent radius of the
dendrite tip when viewed along the — % axis (the
dendrite frontal radius) may be obtained from equa-
tions (5) and (6).
Setting & to —J, we obtain

r; = acoshn,, (oblate) )]

and

®)

re = asinh#,, (prolate).

a\ . o, a2 (L*Y 2
fo= Z; sinh? 5, — 2 g tanh?n,,

., OL* 3 \?
- 2Z“ZZ—~tanh2 Tip — (g) tanh®#,,
b
{prolate} (12}

where
_ k—k) Pk,

R[(ps(gs - pz%z)f‘s) + pl(gl]
and Ly is the dendrite spacing (see Appendix). The

parameter f, represents the fraction of the cross-
sectional area at any position that is occupied by ice.

1*

(13)
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ENERGY AND MASS TRANSPORT
NEAR DENDRITE TIPS

Transport equations

Ivantsov [2] analyzed heat and mass transport in
the vicinity of dendrite tips described by equation (1)
and indicated that the isotherms and isoconcentrates
are mathematically identical in form to the dendrite tip
equation. This implies that the temperature and con-
centration fields are 1-dim in the axial coordinate, #.

The 1-dim. ordinary differential equations describ-
ing the energy and solute transport have been derived

by [6]:
AT, 0T
‘ 5> + [Pec;coshn + tanh = =0, (14)
on on
a*C 0C
—— + [Pec coshy + tanh n](— = (15)
an* an
for the oblate spheroidal geometry, and
P2, AT, ;
© "0 4 [Pec;sinhy + cothn]“={ =0  (16)
én én
02 C ac
(Az + [Pec.sinhn + cothy]— =0  (17)
én n
for the prolate spheroidal case, where
Pec_ = aR/D (18)
and
Pec; = aR/u;, j=s,t. (19)

Comparison of equations (14)-(17) shows that the

temperature and concentration fields will be geometri-

cally similar in form but will in general have different

parametric distortion. The solution to equations
(14)—(17) is given by

Pin) — P, = Kjg;(Pec;, ), (20)

i=s,f,c; j=oblate, prolate

where P, = T, P, = T, and P, = C, and the K/ are

constants of integration. The functions g; are given by

Goblate = J‘ /oblale d'% (21)

1

gprolatc = J\ /prolaledn (22)
n
where
exp(— Pec;sinhn)
= — — 23
/;)blale COSh 1 ( )
and
exp(— Pec;coshn)
prolate — . 1. - (24)

sinh

Boundary conditions
The boundary conditions for the temperature and
concentration fields are summarized in Table 2. In the

freezing of most aqueous solutions, solute molecules
are excluded completely from the advancing ice crys-
tal. This condition is expressed mathematically by
setting the solute particle velocity to zero in the
dendrite- surface--fixed coordinate system. By neglect-
ing the volume change associated with freezingt, we
obtain

P

cC .
i (Mip) + Pec,sinh(ng,) Cln,;,) =0

(25)

and

~

éC
a(mip) + Pec.coshing,) Cln,}) =0 (26)

for the prolate and oblate cases respectively. The
conditions are applied at n = 7, which represents the
front surface of the advancing dendrite.

The temperature profiles described by equation (20)
must “match” at the dendrite surface. Then

Ts(r,lip) = Tz(r’lip) = Tl'

If we assume that the solid phase and the liquid
solution just adjacent to it are essentially in local
thermodynamic equilibrium, the interface concen-
tration will determine the interface temperature from
the locus of two-phase equilibrium states. This locus
may be approximated by a power series of the form

Ty =d + b Cligp) + ¢ C2(ng,) + d CHrgp). (28)

(27)

The rate of liberation of the latent heat of fusion is
controlled by the rate of advance of the dendrite.
Conservation of energy applied to a control volume
centered on the dendrite surface gives

dT. dT,

ksd'ns(mip) - kqn— (n4p) = aRp Lsinh(n,,) (29)

for the prolate coordinates; and

dT, T,

5 ) = kG ) = 0By, Leoshing) (30)
for the oblate coordinates. The left-hand sides of
equations (29) and (30) represent the net heat flux out
of the control volume as calculated by the Fourier
conduction law, which is equated to the rate of
liberation of the latent heat of fusion.

In addition to satisfying conservation of energy and
solute, a dendrite stability condition must be imposed
at the dendrite tip. Dendrites are formed from the
growth of perturbations of a morphologically unstabie
planar interface. This structural change tends to relieve
instability as the system approaches a stable, quasi-
steady state. The tip configuration at steady state is
that which just eliminates the instability, and is termed
marginally stable.

The Mullins—Sekerka stability criterion [3] which

tAs stated in the preceding paper, this volume change
would give rise to a relative motion between the solid and
liquid regions. Its effect is considered negligible.
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Table 2. Boundary conditions at the dendrite tip

Prolate

Oblate

Concentration

ac .
El‘(nup) + Pec,sinh(n,;;) C(n,,) = 0

ac
a—n(n.ip) + Pec_cosh(,;,) C(n,) = 0

T(Mp) = Tilngp) = @ + b'Clnyy) + ¢ Cliny,)* + d' Clogip)?

Temperature
dT,

k,—
d

= aRp,Lsinh(n,,)

ac T, 1

Marginal stability condition oF (1p)

s

s T
n ('hip) - kﬂ.E’i('hip)

o Tk +k,

dT, dTr
ksa‘(’?np) - kz’a,f(”ﬁp)
= aRpsLCOSh(mip)

dT,

s

dT,
s@(mip) + kLE(”lip) <0

was developed for planar freezing, applies equally well
to the present case. The criterion mathematically
expresses the condition of stability of a given dendrite
configuration and will apply as a coupled boundary
condition on the transport fields. The criterion is:

oc . 1
22 1% 5 Tk —k,

dT; dT,
x [ks—d}(”tip) + kgd—ﬁj(rl.ip)] <0 (31)

where the terms are expressed by equations (20), (25),
(26) and (28). The first term of equation (31) represents
the gradient in the liquidus temperature; it is always
positive and thus is a destabilizing influence. The
second term represents the interface temperature gra-
dient; it is always negative and favors stability. Mar-
ginal stability of the interface occurs if the two terms
are equal in magnitude. Marginally stable dendrites
and the equality of equation (31)is the case considered
here.

Equations (25)-(30) may be used in equation (20) to
solve for the constants of integration, K; After re-
arranging, these constants are given by

C, Pec coshn,,
}/O(Pecc’ r’lip) - Pecc cosh r’tip go(Pecc’ ntip) ’

C
o

(32)
. C . Peccosh 1,
P /’p(Pecc’ nlip) - Pecc Sinh ”!ipgp(Pecc' rllip) ’
(33)
1:-’ _ Tl - T% , (34)
go(Pec,, 'hip)
T,—-T
K= —t (35)
gp(Pecv r’lip)
k Ao(Pec,ny) RpL .
K =-2Kr12 2 lupl _ 05 gsinhgy 36
Pk P Pecy i) Ky e (9)
and
k P 2 Tt R sL
K= LK- folPec ) _ Rp acoshn, (37)

ks o//;(Pecs’ ”tip) ks

where T(n,;,) is the temperature at the dendrite surface
given by equation (28) with C(r,,,) given by equation
(25) or (26). By using these constants in equations (20)
and (31) and by specifying the dendrite frontal radius
and the rate of freezing, the concentration and tem-
perature profiles in the vicinity of the advancing
dendrite may be obtained.

Spheroidal coordinate results

The non-dimensional temperature and concen-
tration profiles are plotted in Figs. 2 and 3. These plots
represent a comparison of profiles near marginally
stable dendrites of a constant frontal radius of 100 ym,
in order to illustrate the effect of freezing rate. The
frontal radius, given by equations (7) and (8), may be
substituted into the definition of Peclet number to
yield

R(100 ym)
Pec. — —VUHIY lat 38
ec, Deinb(n,.) (prolate), (38)
R(100 um)
=——"""  (oblate), 39
€Ce Dcosh(n,;,) foblate) .
R(100
Pec; = _(_ﬁm_) (prolate) (40)
a;sinh(n,,)
and
R(100
Pec; = R109pm) (oblate), j=s,€ (41)

B a;cosh(n,,)

Thus as the rate of freezing is varied from 10 um/s to
1000 um/s, the Peclet numbers must be changed
according to equations (38)-(41) to maintain the
frontal radius at 100 um. Physical constants used in the
solution are identical to those used in the previous
paper [1].

The concentration and temperature profiles are
expressed in terms of the “unaccomplished potential
change” or the fraction the potential has changed from
the interface value to the free-field value. To specify the
potential fields completely, the interface concentration
must be calculated from equation (20) and the cor-
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0 ool 0.02 003

7*

FiG. 2. Non-dimensional temperature profiles in the vicinity of dendrites growing at various rates. Dendrite
frontal radius is constant at 100 um.

&) 0.001 0.002

0002 0.005

0003

7*

F1G. 3. Non-dimensional concentration profiles in the vicinity of dendrites (; = 100 um) growing at various
rates.

responding interface temperature calculated from
equation (28). These parameters are plotted in Fig. 4.
The three factors that increase the interface con-
centration (decrease the interface temperature) are
increasing the bluntness of the dendrite tip, increasing
the rate of freezing and increasing the dendrite frontal
radius. Since the tip bluntness is fixed by the require-
ment of marginal stability and the frontal radius is
fixed by definition (100 um), Fig. 4 illustrates the effect
of rate of freezing only.

The temperature and concentration profiles shown
in Figs. 2 and 3 are qualitatively similar since they are
both solutions to equation (20) with different Peclet
numbers and boundary conditions. The variation of
both profiles is of the form exp{Pec-expy). This
functional form causes a drastic change in the poten-
tials near the dendrite surface but a much slower
change as the free-field is approached.

BASAL REGION—TIP REGION
MATCHING CRITERIA

Limit of basal region

The assumption of planar iso-potential loci places
limits on the region of applicability of the basal region
solution. The assumption becomes invalid when the
dendrite area changes substantially with axial posi-
tion. It can be shown [4] that the overall solution is
very insensitive to the number chosen for the termin-
ation value of df,/dZ*, provided that it is greater than
0.2. Therefore, the criterion for terminating the basal
region and starting the tip region will be assumed when
the magnitude of df /dZ* exceeds 0.2.

Geometric compatibility

The basic idea behind the “two-zone” solution
scheme is to use the basal region solution to describe
the dendrite shape up to a changeover point and then
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to determine a spheroidal cap that matches with this
dendrite base. Therefore, the values of f, and df /dZ*
predicted by the basal solution must be equal to the
values predicted by the tip region solution at the point
of changeover. By definition, Z* =0 at the point of
changeover, so using equations (11)and (12) we obtain

a\? 5\
f,(changeover} = (E,;) cosh?r,, — (E,;) coth?,,
(42)

= ¥

s 2

*

d oL
d—‘é% {changeover)= — 2 ('Eg)cothzrftip (43)

for the oblate case, and

a\ 3\
f (changeover) = (L—D> sinh?r,, — (E)) tanh?n,;,
(44)

= f*

=Js»

*
d{s (changeover)= — 2 (éil;—)tanhz Miip (45)

dzZ* 2

for the prolate system, where f* is the value of
fs predicted by the basal solution at the point of
changeover. The reader should note that higher
order derivatives are allowed to be discontinuous at
the point of changeover.

Thermal matching conditions

At the point of changeover, the first law of thermo-
dynamics requires that temperature and heat flux be
continuous. Equating the heat flux predictions in the
basal and tip regions at the point of changeover, we
have

az* {changeover)

_.Rpg[f:L+ %z(Tx - Tl)} L
C fEe+(L—fHk,

The fact that the temperature distributions pre-
dicted by the basal and tip region solution schemes are
geometrically dissimilar in shape makes compliance
with the requirement of temperature continuity dif-
ficult. As an approximate criterion, the temperature
predicted by the basal solution will be equated to the
dendrite tip temperature,

(46)

T(changeover) = T () = T.(ngp)
~T.

“7)

The maximum error associated with this simplified
criterion is 0.01 K.

Overall method of solution
A block diagram of the solution scheme is shown in
Fig. 5. The method consists of two serial parts. The first

HMT 25:4 - L
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part is to determine the basal temperature gradient
and the axial position of changeover Z% ., using a
one-point iteration scheme. These parameters are then
used as boundary conditions to calculate the com-
posite temperature and concentration fields in the
second part of the procedure.

The calculation is started by guessing values for the
two unknown variables. The basal region equations
are then integrated from Z* = 0 (basal plane) to the
assumed 2}, The resulting values of f, and
df/dZ* at Z* = Z},,.. are used in equations
(42)-(45) to obtain a and S. The dendrite tip con-
figuration #,,, is calculated from equation (31} and the
tip concentration and temperature are calculated from
equation {20). The degree of satisfaction of the
matching criteria is determined by comparing the left
and right hand sides of equations (46) and (47). If the
criteria are not satisfied to acceptable accuracy, a
revised guess of the basal temperature gradient and
changeover position is made and the procedure is
repeated. When acceptable accuracy has been ob-
tained, the basal region and tip region equations are
integrated a final time to obtain the final result.

The reader should note that the temperature, con-
centration and dendrite shape profiles do not depend
upon the rate of freezing when described in the Z*
coordinate system. The spheroidal characteristic dim-
ension, a 1s proportional to dendrite spacing (see
Appendix) which is in turn proportional to R ~'. When
the characteristic dimension, g, is substituted into
equations (38)-(41) to obtain the Peclet numbers, the
rate of freezing dependence is cancelled.

OVERALL RESULTS AND DISCUSSION

The overall temperature, concentration and den-
drite shape results are presented in Figs. 6-9. Two
independent boundary conditions are needed to
specify each freezing condition : the free-field tempera-
ture and the free-field concentration. An equivalent
way of expressing the temperature boundary condition
is by the free-field superheat which is defined by

AT: T'f - I(C:}

where T|(C ) represents the equilibrium freezing tem-
perature at the free-field concentration.

The concentration in the liquid just adjacent to the
dendrite tip, shown in Fig. 6, increases sharply with
AT. Larger values of superheat increase the liquid
phase temperature gradient, which from equation (31)
is a stabilizing influence. The tips are therefore more
blunt at marginal stability producing higher values of
tip concentration. Tip temperature decreases with
increasing tip concentration due to the assumption of
thermodynamic equilibrium, in a manner similar to
that shown in Fig. 4. As AT approaches zero, the
interface concentration approaches the free-field value
and the interface temperature approaches the equilib-
rium freezing temperature.

As material moves through the solidification zone, it
undergoes three distinct energy interactions. The

(48)
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Fic. 4. Interface concentration and temperature as a function of the rate of freezing and the free-field
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Fi1G. 5. Block diagram of solution technique.
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FIG. 7. Sensible heat flux at the basal plane as a function of
free-field concentration and superheat.
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dominant interaction is the release of the latent heat of
fusion, which is constant at a given free-field con-
centration [ 1,4]. The other two energy interactions are
sensible energy changes resulting from cooling the
liquid to the freezing temperature and cooling the solid
to the eutectic temperature. All of these energy in-
teractions contribute to the required basal heat flux.

Since the release of the latent heat of fusion is not
affected by AT, the required basal heat flux in excess of
the latent heat flux contribution is plotted in Fig. 7. Of
the two sensible heat interactions, the change of
temperature of the liquid is the dominant factor since
the thermal capacity of the liquid is twice that of the
solid. The basal heat flux due to the change of
temperature of the liquid is proportional to the free-
field temperature, which produces the linear relation-
ship shown in Fig. 7.

The temperature and concentration profiles along
the midline between two adjacent dendrites (the
interdendritic space) are shown in Figs. 8 and 9 for C,
= 1000 and 2000 mol/m? respectively. The tempera-
ture increases almost linearly from the basal plane to
the point of changeover between the basal and tip
regions where it approaches the free-field temperature
asymptotically. Because of the assumed coupling
between temperature and concentration in the basal
region, the concentration decreases linearly and ap-
proaches C , in a manner similar to the temperature.

The concentration and temperature profiles along a
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dendrite axis are shown in Figs. 8 and 9. The tempera-
ture profiles are identical to those on the interdendritic
axis in the basal region since the temperature field was
assumed to have no lateral variation in that region.
However, the temperature gradient along the dendrite
axis is allowed to be discontinuous at the dendrite
surface by virtue of equations (29) and (30). The
magnitude of this discontinuity is small enough to be
quantitatively unnoticeable in Figs. 8 and 9. The
concentration of solute is zero everywhere in the solid
and exhibits steep profiles in the liquid just adjacent to
the dendrite tips.

SUMMARY AND CONCLUSIONS

Equations describing the energy and mass transport
near the tips of steadily advancing dendrites have been
derived. Transformation to the oblate—prolate
spheroidal coordinate system yielded 1-dim. equations
which were solved analytically. Because of the 1/R
variation of the dendrite spacing, interface speed was
eliminated as an independent variable.

The solution of the l-dim. equations show that
dendrites are shorter and more blunt for both higher
free-field superheat and higher free-field concen-
tration. The required basal heat flux and dendrite tip
concentration also increase sharply with increasing
free-field superheat. The steep concentration profiles
near the dendrite tip are made less severe by increasing
tip pointedness or decreasing dendrite diameter.
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F1G. 9. Interdendritic and centerline temperature and concentration profiles and dendrite shape profiles for
C, = 2000 g-mol/m>. The dashed lines represent the temperature profiles and correspond to the left-hand

ordinate.
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APPENDIX

Dendrite spacing

The most recent work on dendrite spacing in aqueous
systems is by Rohatgi and Adams [5]. They derived the
following relationship between dendrite spacing and solidifi-
cation parameters

Lp = (A, + A,C )/ (A1)

where 4, and A, are constants, and the characteristic freezing
time ¢, is defined by [4]

tp = 025L*/12.
From available data, A, and A, are found to be
Al =641 x 10—7m-s—!/2

(A2)

and

Ay, =109 x 1072 m*s™ ! 2g-mol™".

ANALYSE DU TRANSFERT DE CHALEUR ET DE SOLUTE PENDANT LA
SOLIDIFICATION D'UNE SOLUTION AQUEUSE BINAIRE—II. REGION DES
SOMMETS DES DENDRITES

Résumé—On développe I'analyse du transfert d’énergie et de masse prés des sommets de dendrites qui
avancent en permanence. Des équations de transport ont été obtenues puis résolues en utilisant la méthode
de changement de variable pour obtenir un systéme 4 une dimension. Des critéres géométriques et
thermodynamiques sont employés pour faire en sorte que les champs dans la région du sommet soient
compatibles avec ceux obtenus précédemment dans la région du plan de base.

Les résultats globaux montrent que plus le champ de température est €levé, plus les dendrites sont courts et
émoussés. De fagon semblable, I'accroissement du champ libre de concentration avec une surchauffe
constante réduite notablement la longueur des dendrites. Celle-ci est trouvée étre aussi inversement

proportionnelle 4 la vitesse de solidification.

EINE ANALYSE DES WARME- UND STOFFTRANSPORTS BEIM ERSTARREN EINER
WASSRIGEN BINAREN LOSUNG—II. BEREICH DER DENDRITENSPITZE

Zusammenfassung—Es wurde eine Analyse des Energie- und Stofftransports in der Ndhe der Spitzen von
stetig wachsenden Dendriten entwickelt. Die Transportgleichungen wurden aufgestellt und durch Variablen-
transformation in ein eindimensionales System geldst. Geometrische und thermodynamische Anspas-
sungskriterien wurden eingefiihrt, um sicherzustellen, daB die Felder der TransportgréBen in der
Spitzenregion mit denen vertriglich sind, die schon friiher fiir den Basisflichen-Bereich ermittelt wurden. Die
Gesamtergebnisse zeigen, daf die Dendritenform um so kiirzer und stumpfer wird, je héher die Temperatur
in der Losung ist. Ahnlich reduziert eine zunehmende Konzentration in der Lésung bei konstanter
Uberhitzung die Dendritenlinge drastisch. Es zeigte sich, daB die Dendritenlinge umgekehrt proportional
der Gefriergeschwindigkeit ist.

AHAJIM3 TMMEPEHOCA TEITJIA 1 MACCBI PACTBOPEHHOI'O BEUIECTBA [1PU
3ATBEPAEBAHNHU BOJHOIO BUHAPHOI'O PACTBOPA — II. OBJIACTh
JAEHAPUTHBIX BEPIIHNH

Aunotauna — [IpoBesieH aHANN3 NEPEHOCA JHEPrHM M MACChl Y BEPLUMH HENPEPBIBHO PACTYLIMX ACH-
Aputos. BeiBenenbl ypapHeHHs NEpeHOCa, KOTOPbIE PelLieHbl METOAOM MpeoGpa3oBaHHs IePEMEHHBIX
Ui 0JHOMepHOro ciyvas. [{s conocTaBjieHHs! pe3y/bTaTOB NO 1IEPEHOCY, MOJYYEHHBIX B 0614CTH
Yy BEpUIMH ¥ Ga3UCHOM MIOCKOCTH MCMOJb30BAHCh TEOMETPUUECKHE U TEPMOIMHAMHUYECKUE KPHTEPHM
cpaluBahua. [Toka3aHo, 4TO 4EM BBIILIE TEMNepaTypa pacTBoOpa, TeM 6oJiee KOPOTKMMH H MOJOrHMHU
ABJIAIOTCH JAEHAPHTBL. AHAJOrHYHO, NPH 60/bLIEH KOHUEHTPAlUHH PACTBOPA H NOCTOSHHOM €r0 nepe-
rpeBe /UIMHA JCHIPUTOB 3HA4YNTENbHO Menblie. HalizieHo Takxke, 4TO MIMHa [eHAPUTOB OBpaTHO
NpONOPUHOHANbHA CKOPOCTH 3aTBEPACBAHUS.



